vat_loss
        VATLoss
¶
  
        Bases: torch.nn.Module
Implementation of the loss used in
- Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
- A DIRT-T Approach to Unsupervised Domain Adaptation
Source code in pytorch_adapt\layers\vat_loss.py
          | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |  | 
__init__(num_power_iterations=1, xi=1e-06, epsilon=8.0)
¶
  Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| num_power_iterations | int | The number of iterations for computing the approximation of the adversarial perturbation. | 1 | 
| xi | float | The L2 norm of the the generated noise which is used in the process of creating the perturbation. | 1e-06 | 
| epsilon | float | The L2 norm of the generated perturbation. | 8.0 | 
Source code in pytorch_adapt\layers\vat_loss.py
        | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |  | 
forward(imgs, logits, model)
¶
  Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| imgs | torch.Tensor | The input to the model | required | 
| logits | torch.Tensor | The model's logits computed from  | required | 
| model | torch.nn.Module | The aforementioned model | required | 
Source code in pytorch_adapt\layers\vat_loss.py
        | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |  |