randomized_dot_product
        RandomizedDotProduct
¶
  
        Bases: torch.nn.Module
Implementation of randomized multilinear conditioning from Conditional Adversarial Domain Adaptation.
Source code in pytorch_adapt\layers\randomized_dot_product.py
          | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |  | 
__init__(in_dims, out_dim=1024)
¶
  Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| in_dims | List[int] | A list of the feature dims. For example,
if the input features have shapes  | required | 
| out_dim | int | The output feature dim. | 1024 | 
Source code in pytorch_adapt\layers\randomized_dot_product.py
        | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |  | 
forward(*inputs)
¶
  Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| *inputs | torch.Tensor | The number of inputs must be equal to the length of  | () | 
Source code in pytorch_adapt\layers\randomized_dot_product.py
        | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |  |