randomized_dot_product
RandomizedDotProduct
¶
Bases: torch.nn.Module
Implementation of randomized multilinear conditioning from Conditional Adversarial Domain Adaptation.
Source code in pytorch_adapt\layers\randomized_dot_product.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
__init__(in_dims, out_dim=1024)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_dims |
List[int]
|
A list of the feature dims. For example,
if the input features have shapes |
required |
out_dim |
int
|
The output feature dim. |
1024
|
Source code in pytorch_adapt\layers\randomized_dot_product.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|
forward(*inputs)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*inputs |
torch.Tensor
|
The number of inputs must be equal to the length of |
()
|
Source code in pytorch_adapt\layers\randomized_dot_product.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|